Paradigm shifts in health informatics needed for leveraging FAIR data environments*

NETTAB 2018, Genoa, Italy

Amnon Shabo (Shvo), PhD
- Founding Fellow, The International Academy of Health Sciences Informatics
- Founder and Chair, EFMI Translational Health Informatics Working Group
- Founder and Chair, IMIA Health Record Banking Working Group
- HL7 Fellow, Founder and Co-chair, HL7 Clinical Genomics Work Group

Based on a keynote speech at MedInfo 2015 under the title: “Translational & Interoperable Health Infostucture - The Servant of Three Masters”
Agenda

Glad to be with you:
- Second time in NETTAB
- Second time in Genova
- And now: my FAIR Genova… 😊
FAIR is important!
- Findable…
- Accessible…
- Interoperable…
- Reusable…

And then what?

This talk is about how to leverage FAIR and move forward in bridging between science and healthcare
Translational Medicine – Main Barriers

- The reality
 - Some successful bedside interventions do not scale out to community
 - Many interventions do not end up in medical societies’ guidelines

- Possible explanation
 - Disciplines are limited to biology
 - Methods are limited to controlled trials
Broadening & Converging in Translational Informatics

DISCIPLINES
- Economics
- Law
- Ethics
- Biology
- Psychology
- Design

METHODS
- Machine learning
- Simulation
- Controlled trials
- Case-based reasoning

Point of care
Each discipline has its own informatics!

Each method has its own informatics!

How all of these could be converged??

Even in the biomedical world, informatics is constantly changing… so we need touch point to streamline the flow of data

What are some example formats and their possible touch-points?
This presentation consists of materials published by Amnon Shabo (Shvo) in MedInfo and EFMI.

Knowledge
- Scientific Knowledge: Nano-publication
- Research Metadata: ISA
- Omics Data: iPOP
- Imaging Data: DICOM & ext.
- Device Data: Continua & IEEE
- Key Data Encapsulated or referenced
- Decision Support: Health eDecisions (HeD)

Raw & mass or research DATA
- Provenance
- Findings
- Bubble-up

Point of Care DATA
- Compositional Syntax: HL7 Clinical Statement, CDA & FHIR; openEHR
- Constraining Syntax: ADL (AML), UML+OCL
- Profiling: IHE, openEHR

Harmonization and formalization
- SemanticHealthNet, Trillium Bridge, eStandards

Bridge Standards
- (e.g., GTR, DIR, PHMR)

Standards
- (e.g., GTR, DIR, PHMR)

Scientific Knowledge
- Microarray
- Omics Data: iPOP
- Nanotechnology

Biomedical Information Formats Landscape and Touch Points
Despite Touch Points, Current Representations have Issues...

- Often, current formats/schemas/standards are ‘silos’ because they are:
 - oriented towards specific sub-domains or scoped-down usages
 - limited in their expressivity with rigid structures
 - inconsistent with each other, regarding core semantics
 - have overlaps in scope

- For example, formats of family health history (FHH):
 - Developed by HL7:

v3 Pedigree

CDS vMR FHH

CCD/CCDA FHH Section

FHIR Resource

Genetic Profile
Towards a Health Information Language

- PCAST reports called for a “universal exchange language”…

- …but we need a more generic language, that is:
 - Any type of information representation – not only exchange
 - Compositional / synthetic – creating expressive compositions
 - Translational – representing various disciplines & methods

- We need a Translational Health Information Language (THIL)
 - Such a language is closer to a natural language
 - Parsing / processing is harder, but…
 …if NLP algorithms can understand natural languages – couldn’t similar algorithms understand a more structured language like THIL?!

- Domain/usage-oriented standards will then be just specific compositions of that language, not set-in-stone constructs!

- Could we then phase out the current rigid standards?!
Five Informatics Imperatives towards THIL

1. Represent **contextual semantics explicitly**

2. **Strike** a balance of narrative-structured data

3. **Encapsulate** key raw data (omics, sensors, images)

4. **Constrain** generic formats by model-driven tools

5. **Organize** all data into an EHR (+family history)

Should be applied to standards & their usage, which might bring them closer to THIL (underlying reference models should use ontology developing principles, e.g. BFO)
Health data semantics and context cannot be faithfully represented using flat structures (e.g., a list of disconnected entries), rather, it requires the association of entries into meaningful statements (while using post-coordinated codes).

Imperative #1
Example: gall bladder stones observation (of a patient), was the **reason** for cholecystectomy (performed by clinicians), which was the **cause** of infectious complications that **indicated** the prescription of antibiotics.

It’s already available through the new generation of standards, but not used in practice!
Clinical Genomics Statement Model

- Specializes the HL7 Clinical Statement model
- Aligned with HL7 Clinical Genomics specs
- Subset is used by the Genetic Testing Report (GTR)*

* GTR was created by constraining the HL7 Clinical Document Architecture (CDA) base standard

Developed by the HL7 Clinical Genomics WG
Kobayashi et al. (2005) reported a patient with advanced non-small cell lung cancer in complete remission during treatment with Gefitinib (he was Gefitinib-responsive due to somatic EGFR-mutant). However, after 2 years he got into relapse.

Re-sequencing DNA of the EGFR gene in his tumor biopsy specimen at relapse revealed the presence of a second mutation. Structural modeling and biochemical studies showed that this second mutation led to the Gefitinib resistance.
Accommodate unstructured data (e.g., clinician's narrative, patient’s story or research manuscript), while maintaining interlinks to structured data entries corresponding to contents that have been structured.

Imperative #2
HL7/ISO CDA (Clinical Document Architecture)

- Printed
- Bedside
- ...

- EMR
- Transcription
- ...

- Clinical Decision Support
- Patient held-records alerts
- ...

Human-to-Human

Machine-to-Machine

Structured data

Clinical Decision Support
Patient held-records alerts
...

Rendered narrative

Rendered narrative

Medical Records
Transformation
...

interlinks

CDA
Key data sets out of raw/mass data should be encapsulated by clinical structures in its native format, and-

gradual distillation

relevant items out of the key data sets should then be associated with phenotypic data (while maintaining traceability)

Imperative #3
HL7 Clinical Genomics: Encapsulate & Bubble-up

Genomic Data Sources

- HL7 CG Messages with mainly Encapsulating HL7 Objects and possibly interpretations
 - e.g., encapsulation of certain genes from a whole-exome sequence

Clinical Practices

- HL7 CG Messages with some encapsulated data item associated with phenotypic data
 - e.g., association of certain genetic variations to observed or interpretive phenotypes

EHR System

- Knowledge (Knowledgebases, Ontologies, reference DBs, Papers, etc.)

Decision Support Applications

- Bubble up the most clinically-significant raw genomic data into specialized HL7 objects and link them with clinical data from the patient EHR
 - re-analysis
Often, generic formats need to be constrained, however, derivatives might divert from the base semantics; Model-driven constraining technologies prevent divergence!

Imperative #4
Data compliant with various biomedical standards should be integrated into a single & coherent information entity, representing the complete health information of an individual – a.k.a - the Electronic Health Record (EHR)

Imperative #5
Medical record
Every authenticated recording of medical care (e.g., clinical documents, patient chart, lab results, medical imaging, personal genetics, etc.)

Health record
Any data items related to the individual’s health (including data such as genetic, self-documentation, preferences, occupational, environmental, lifestyle, nutrition, exercise, risk assessment data, physiologic and biochemical parameter tracking, etc.)

Longitudinal (possibly lifetime) EHR
A single computerized entity that continuously aggregates and summarizes the medical and health records of individuals throughout their lifetime

Cross-institutional

Medical records

Longitudinal, possibly life long

From medicine to health...

Patient-Centric Health Record

Content

Time

Source

Health record

Should also include bio data
What's Missing? Analytics for Personalization!

DATA: New types of data; Incomplete history

KNOWLEDGE: We don't know much more than we know

Decision making is hard!

Trial & error

Rule & case-based Knowledge (intuition?)

Humans

Machines

The case is the lifetime EHR (including family health history)

Add case-based reasoning for personalized care

Health Record Banking

Sustainability

This presentation consists of materials published by Amnon Shabo (Shvo) in MedInfo and EFMI.
EHR Sustainability Constellations

- **Government Centric**: e.g., UK
 - Big brother
- **Provider Centric**: e.g., Canada
 - Partial data
- **Regional Centric**: e.g., USA
 - Limited
- **Consumer Centric**: e.g., Google Health
 - Non-reliable Data

Non-Centric: Independent EHR Banks (IHRBs)

Risk

This presentation consists of materials published by Amnon Shabo (Shvo) in MedInfo and EFMI.
Longitudinal EHRs should **not be federated** (virtual) because:

- Sources might not be available (down or out-of-business)
- True summarization cannot be done “on the fly”

Main assertion*:

None of the existing players in the healthcare arena can, or should, sustain aggregated lifetime EHRs

Rationale:

- Involves intensive IT computing tasks (archiving, preservation, etc.) which are not the main focus nor expertise of existing players
- If an existing player sustains EHRs, it might lead to ethical conflicts
This presentation consists of materials published by Amnon Shabo (Shvo) in MedInfo and EFMI.

The Conceptual Transition

Current constellation: Operational IT Systems
Provider Medical Records Archive

New Legislation

New constellation: Standard-based Communications
Provider Independent Health Records Bank
Operational IT Systems

Patient

Individual

Operational IT Systems
Provider Medical Records Archive

Operational IT Systems
Provider Medical Records Archive

Operational IT Systems
Provider Medical Records Archive
1. Healthcare Provider / Clinical Trials or Research sponsor receives the current EHR from the patient’s IHRB

2. Provides care / conduct research on the patient

3. Sends medical / health records back to the patient’s IHRB

4. EHR is updated
IHRB Legislation - Main Principles

- The medico-legal copy of a medical record resides solely in an IHRB.

- An IHRB must be independent of healthcare providers, health insurers, government agencies, or any entity that might present a conflict of interests.

- Allow for multiple independent IHRBs, regulated by the authorities, preferably functioning as not-for-profit organizations (cooperatives?)

- A consumer can move from one IHRB to another.

- A consumer’s EHR is identified by its IHRB account number, so there is no need for unique IDs at any level.
Brownback (R-KS): Independent Health Record Bank Act of 2006:

- IHRB goals are to save money and lives in the health care system
- Only non-profit entities are permitted to establish IHRBs
- IHRBs function as cooperative entities that operate for the benefit and interests of the membership of the bank as a whole
- Revenue:
 - IHRB’s may generate revenue by
 - charging health care entities account holders account fees for use of the bank
 - the sale of non-identifiable and partially identifiable health information contained in the bank for research purposes
- Revenue will be shared with account holders and may be shared with providers and payers as an incentive to contribute data
- Revenue generated by an IHRB and received by an account holder, healthcare entity or health care payer will not be considered taxable income
Summary

- Translational health informatics
- Biomedical information formats landscape
- Moving away from rigid domain/usage standards…
 …towards Translational Health Information Language (THIL)
- Five Informatics Imperatives when moving towards THIL
 - Represent associations between entries explicitly
 - Strike a balance of narrative and unstructured data
 - Encapsulate key items out of raw/mass data
 - Constrain generic info structures using model-driven tools
 - Use the EHR as the main organizer for individual data (incl. FHH)

- Refine clinical decision support through case-based reasoning
- The case is the lifetime EHR (the 5 imperatives make it rich)

- Healthcare providers should not be the record keepers, rather –
 independent EHR data banks should sustain personal EHRs!
The End

- Thanks for your attention!
- Questions?
- Comments: amnon.shvo@gmail.com

Records of Health

Revolutionizing healthcare through independent lifetime health records

Standards of Health

Towards a universal health information language