A benchmark for evaluation of phylogeny reconstruction programs

Sergei Spirin

phylogenetic programs on large sets of alignments.

Testing

To evaluate our benchmark, we compared two "methods". The first is program TNT with default parameters. The second is the same program, but using alignments of orthologous series (OS) with first one-fourth of columns being removed. Obviously the second "method" should be less accurate than the first one.

Dataset	# OS	1st is better	2nd is better	P-value
Metazoa-10	1499	337 215		2.3.10-
Metazoa-15	1283	366 236		1.3.10-7
Fungi-15	1191	401 247		$1.6 \cdot 10^{-9}$
Proteobacteria-15	784	253	121	7.7·10 ⁻¹
Metazoa-25	969	271	214	0.011
Fungi-30	1004	395	162	1.9.10 -2
Proteobacteria-30	783	293	101	8.6.10-2
Fungi-45	827	346 153		3.2·10 ⁻¹
Proteobacteria-45	780	281	109	1.3.10 -1

Availability

The Muscle alignments of orthologous series and organism trees are available at http://mouse.genebee.msu.ru/phylobench .

Usage case

The tables contain results of comparing three programs: TNT¹ (based on maximum parsimony principle), RAxML² (based on Maximum Likelihood principle) and FastME³ (based on Minimum Evolution principle) on two datasets. In cells: numerator is number of OS for which the left method is better, denominator for which the top one is better.

Fungi-30				Proteobacteria-30			
	FastME	RAxML	TNT		FastME	RAxML	TNT
FastME		483/166	642/64	FastME		335/88	440/55
RAxML	166/483		440/196	RAxML	88/335		306/126
TNT	64/642	196/440		TNT	55/440	126/306	

¹ The program TNT is being made available with the sponsorship of the Willi Hennig Society, and is published in: P. Goloboff, J. Farris, and C. Nixon. Cladistics 24, 2008.

² The program RAxML is published in: A. Stamatakis. Bioinformatics 30(9), 2014. The version 8.2.8 with the model PROTGAMMAAUTO and other options by default was used.

³ The program FastME is published in: V. Lefort, R. Desper, and O. Gascuel. Molecular Biology and Evolution 32(10), 2015. The version 2.0.7 with default options was used.

Input distances were calculated with the program *protdist* of the PHYLIP package with default options.

Funding: Russian Science Foundation, grant # 16-14-10319

Protoohactoria_30