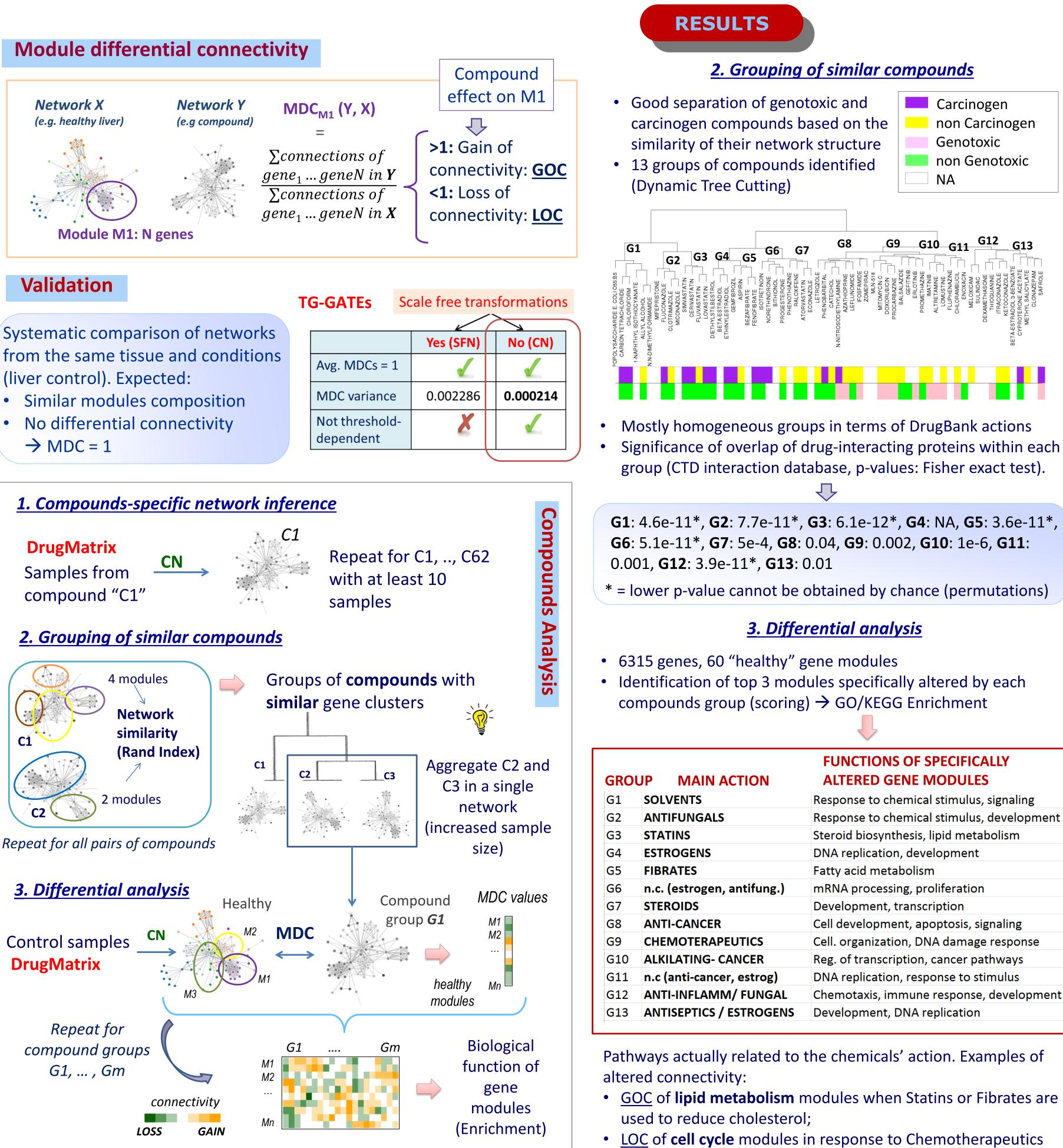


¹Section of Computational Biomedicine, Boston University, Boston, USA ²School of Medicine, Boston University, Boston, USA

INTRODUCTION

Methods for the analysis of networks allow identifying groups of tightly connected genes whose activity may be altered during disease progression or due to chemical agents. Connectivity-based comparisons help identify "aggregate changes" that could be missed by standard methods of differential analysis comparing individual genes. In this work we compared networks obtained from wild type liver samples and from samples collected after the exposure to chemicals with varying carcinogenicity and genotoxicity. **Differential connectivity**



METHODS Data sets Two large cohorts of organ-specific gene expression profiles from controls and from rats exposed to chemical compounds NIEHS National Institute of Environmental Health Sciences 11244 expression profiles 11244 expression profiles 131 chemicals 376 chemicals **TG-GATEs DrugMatrix** Liver, kidney, heart, muscle, hepatocytes Liver, kidney, hepatocytes cause **DNA damage** Control Compounds Genotoxic/ Non genot / NA Liver samples: Carcinogen / Non carc / NA Control: ≥1000 \mathcal{P} observations cause cancer Perturbations: ~10-Chemical classes 100 observations Network and modules inference b) SFN **Pearson** Correlation Scale free between gene transformations expression profiles Sgn(s, 0 Power(s Power(s Power(s Power(s Power(s Threshold on a) CN correlation to fit a **Dynamic tree** "scale free" topology cutting clustering Gene similarity matrix

REFERENCES

[1] Zhang B et al. (2013). Cell 153(3):707-20; [2] Schadt EE et al. (2009). Nat Rev Drug Discov 8: 286–295; [3] Gusenleitner D. et al. (2014). PLoS One. 24;9(7):e102579; [4] Zhang, B. et al. (2005). Stat. Appl. Genet. Mol. Biol. 4, e17.

NETWORK-BASED ANALYSIS OF CHEMICAL PERTURBATION EXPERIMENTS Francesca Mulas¹, Daniel Gusenleitner¹, David Sherr², Stefano Monti¹

Car
non
Ger
nor
NA

	*
	FUNCTIONS OF SPECIFICALLY
I ACTION	ALTERED GENE MODULES
	Response to chemical stimulus, signaling
LS	Response to chemical stimulus, development
	Steroid biosynthesis, lipid metabolism
	DNA replication, development
	Fatty acid metabolism
en, antifung.)	mRNA processing, proliferation
	Development, transcription
R	Cell development, apoptosis, signaling
APEUTICS	Cell. organization, DNA damage response
- CANCER	Reg. of transcription, cancer pathways
cer, estrog)	DNA replication, response to stimulus
MM/ FUNGAL	Chemotaxis, immune response, development
S / ESTROGENS	Development, DNA replication