Materials and Methods

Results 0000 Conclusions

Future perspectives

Identification of Functional Direct Interaction between Transcription Factors and their targets, a computational approach focused on lincRNA

Marika Catapano, Elena Grassi, Paolo Provero and Ivan Molineris

University of Turin Computational Biology Unit

16 October 2015

(日) (四) (日) (日)

Introduction	Materials and Methods	Results	Conclusions	Future perspectives
000	000000	0000		

Gene expression regulation ChIP-seq technology

Materials and Methods

TBA and coexpression as FDI predictors

Results

The importance of the interplay between TFs and lincRNAs

Conclusions

Future perspectives

Materials and Methods 000000 Results 0000 Conclusions

Future perspectives

Transcriptional Regulation by TFs

Transcription Factors (TF) are key proteins involved at this level

- they are recruited by genomic regulatory region in a sequence dependent manner,
- allowing cells to precisely control the transcription rate.

・ロト ・ 一下・ ・ ヨト・・

T ()	
Introc	luction

Materials and Methods 000000

Results 0000 Conclusions

・ロト ・ 雪 ト ・ 目 ト ・ 日

Future perspectives

ChIP-seq technology

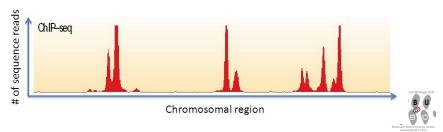
ENCODE used ChIP-seq technologies to investigate binding regions.

- 4440 ChIP-seq experiments
- 141 TFs investigated [Homo Sapiens]

ChIPseq has some limits.

Among them:

• no discrimination between functional and non-functional binding.



Park.Nature Rewievs Genetics 2009.

Introduction	Mat
•00	000

Materials and Methods 000000

Results 0000 Conclusions

Future perspectives

not only ChIP data..

To further analyse TFs behaviour, ChIP data are often integrated with other observations.

Silencing

- integrating ChIP data with Differential expression under TFs perturbation (Cusanovich et al.)
 - TFs Knock-down
 - checking for differential expressed genes
 - ChIP data from ENCODE

(日) (四) (日) (日)

Introd	luction
1110100	action

000

Materials and Methods $_{\rm OOOOOO}$

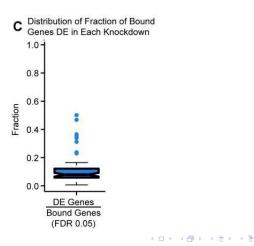
Results 0000 Conclusions

Future perspectives

Binding does not imply functionality

In Cusanovich DA et al 's work:

• a median of 7.9% of the binding was apparently not functional.



Introduction	Materials and Methods	Results	Conclusions	Future perspect
	000000	0000		
000				

Aim of the work

The aim of the work is to develop a model:

- to identify direct interaction
 - discriminating between non-functional and direct functional interactions (FDIs)
 - using only generic data (genome sequence and global transcriptomic profiles) without the need of custom experiment.

Gold standard FDI between a TF and a target gene:

- Significant differential expression (FDR of 5%) of the targets after TF KD,
- Binding evidence of the TF in the target regulatory region.

A 日 > A 同 > A 国 > A 国 >

TBA and coexpression as FDI predictors

Our predictors:

Total Binding Affinity (TBA) of regulatory region Measure of strength and preferential binding of TFs upon

genomic regions.

Coexpression

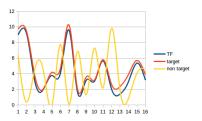
Correlation of gene expression data collected from 16 different cell lines (ENCODE).

Introduction	Materials and Methods	Results	Conclusions
000	●00000	0000	

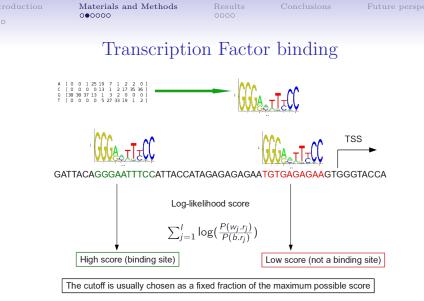
Future perspectiv

Coexpression

- Computed using Pearson's coefficient
- it measures the correlation of all TFs vs. all target genes.



(日) (四) (日) (日) (日)



• This approach assume that the binding of TFs acts through few strong binding sites.

Introduction	Materials and Methods	Results
000	00000	0000

Conclusions

Future perspectives

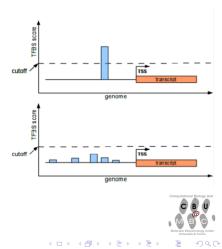
Weak sites are important

TF binding is a thermodynamic process in which an important contribution is given by transient binding to weak sites

- Extensive low-affinity transcriptional interactions in the yeast genome. Tanay et al. Genome research (2006).
- Predicting expression patterns from regulatory sequence in Drosophila segmentation. Eran Segal et al. Nature (2008)

Both strong and weak binding sites contribute, leading to high occupancy of the module DNA, and conferring robustness against mutation.

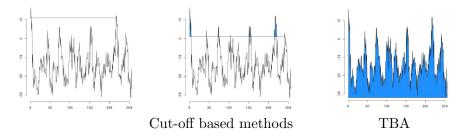
• Approaches based on the definition of discrete binding sites inevitably miss such contribution.



Introduction	Materials and Methods	Results	Conclusions	Future perspectives
	000000	0000		
000				

TBA predicts binding better than cut-off-based methods

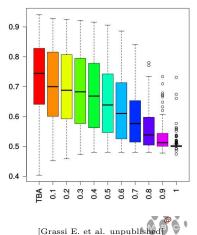
Cut-off based methods loose sequence information, while TBA correctly takes it into account



Introduction	Materials and Methods	Results	Conclusions	Future perspectives
	000000	0000		
000				

TBA predicts binding better than cutoff-based methods

- We use Areas Under ROC curves to asses the predictive power of occupancy:
 - As positives we take the peaks of ChIP/seq experiments
 - As negatives we take the peaks of a control experiment (IgG mouse)
 - Compute the occupancy of all positives and all negatives at different cut-off
 - Compute the AUROC
- \Rightarrow Finally we study the dependence of the AUROC on the cut-off
 - TBA is a better predictor of TF binding than methods based on the identification of discrete binding sites
 - This confirms the relevance of transient binding to weak sites

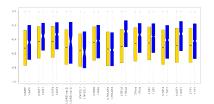


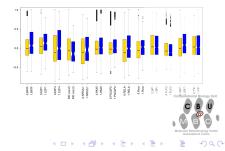
・ロト ・ 一下・ ・ ヨト・・

TBA and coexpression as FDI predictors

13 TFs in common with Cusanovich et al, for which PWMs were available.

- blue cases \rightarrow true FDI
- yellow cases \rightarrow no direct regulation TBA values Coexpression values





Introduction	Materials and Methods	Results	Conclusions	Future perspectives
000	000000	0000		

Validation purpose: Logistic model development

In order to integrate the information carried by TBA and Coexpression

$$\log\left(\frac{p_1}{1-p_2}\right) = \alpha + \beta_1 X_1 + \beta_2 X_2$$

$$\uparrow \qquad \uparrow$$
TBA coexpression

- independent logistic model for each TF to predict functional direct interaction (FDI) between a TF and a putative target gene.
- gold standard: Functional direct interaction (FDI).

A 日 > A 同 > A 国 > A 国 >

Materials and Methods 000000 Results

Conclusions

Future perspectives

Fitting the model

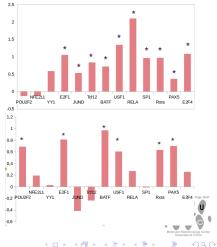
The models were significant in 12 cases with a Wilcoxon Pvalue ≤ 0.05

TBA coefficients

• TBA showed to be a good predictor for the majority of TFs analysed.

Coexpression coefficients

• Coexpression significantly contribute in 6 out of 13 cases for FDI predictions.



Materials and Methods 000000 Results

Conclusions

Future perspectives

FDI PREDICTION

We fitted a model, using all 13 TFs together, that can be generalized to any TFs for which we have PWMs information.

We made the model able to compute a probability of FDI for each TF and putative target.

Final result:

list of putative FDI regarding 208 TFs reported in the Jaspar database, including TF-lincRNA interactions.

, 0	
BIOTYPE	n of putative FDI target
protein coding	14641
lincRNA	7420
antisense	3148
processed pseudogene	1192
unprocessed pseudogene	1904

cut-off=60%

	Ι	n	tı	0	d	u	ct	ti	0	n
--	---	---	----	---	---	---	----	----	---	---

Materials and Methods 000000 Results 0000 Conclusions

Future perspectives

TF-lincRNA FDI

LincRNAs are involved in many mechanisms. Among them they have a crucial role in gene regulation and chromatin remodelling.

TFs and lincRNAs are two important and diverse classes of regulatory molecules.

Shedding light on the functional link between the two is crucial to understand the cell regulatory network.

Materials and Methods

Results

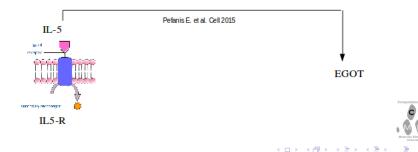
Conclusions

Future perspectives

AN EXAMPLE

EGOT

highly expressed in human bone marrow and in mature eosinophils, its expression can be induced by IL-5 \rightarrow TFT is regulated by MAPK signalling \rightarrow MAPK takes role also in eosinophil differentiation pathway under IL-5R activation



Materials and Methods 000000 Results

Conclusions

Future perspectives

AN EXAMPLE

EGOT

highly expressed in human bone marrow and in mature eosinophils, its expression can be induced by IL-5 \rightarrow TFT is regulated by MAPK signalling \rightarrow MAPK takes role also in eosinophil differentiation pathway under IL-5R activation

Materials and Methods

Results

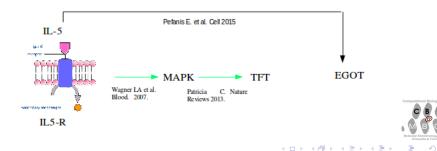
Conclusions

Future perspectives

AN EXAMPLE

EGOT

highly expressed in human bone marrow and in mature eosinophils, its expression can be induced by IL-5 \rightarrow TFT is regulated by MAPK signalling \rightarrow MAPK takes role also in eosinophil differentiation pathway under IL-5R activation



Materials and Methods

Results

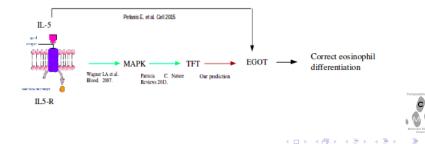
Conclusions

Future perspectives

AN EXAMPLE

EGOT

highly expressed in human bone marrow and in mature eosinophils, its expression can be induced by IL-5 \rightarrow TFT is regulated by MAPK signalling \rightarrow MAPK takes role also in eosinophil differentiation pathway under IL-5R activation



Introduction 000	Materials and Meth	ods	Results 0000	Conclusions	Future perspectives
		~ 1		r	

Conclusions I

• Integration of information by TBA and correlation in gene expression is a powerful predictor of FDI between TFs and their target genes.

・ロト ・ 理 ト ・ モ ト ・ モ ト

Introduction	Materials and Methods	Results	Conclusions	Future perspectives
000	000000	0000		

Repressor and activator TFs

Distinguishing between activating and repressing FDI by fitting two independent logistic models for each TF to predict:

- activating FDI,
- repressive FDI.

if the gene is upregulated after TF KD we used the data as negative example to fit the repressor model, if the gene was downregulated we used the data as positive example to fit the avtivator model. In this way we allowed each TF to act as activator on certain genes and as repressor on others.

A D > A P > A B > A B >

Introduction	Materials and Methods	Results	Conclusions	Future perspectives
	000000	0000		
000				

Repressive and activating TFs

ACTIVATOR

TBA coefficients showed to be significant for 9 TF for the activator model. Coexpression coefficients showed to be significant for 4 cases.

REPRESSOR

TBA showed to be significant in 5 cases for the repressor model. The coefficient associated to the coexpression was significant for 5 TFs.

Coexpression coefficient was positive also for the significant repressing FDIs, where anticoexpression was expected.

A D > A P > A B > A B >

00000 0000	
000	

Conclusion II

A possible explanation of this apparent paradox could be due to:

- coexpression that come from very different cell lines,
- such a coarse grained coexpression was always positively correlated with FDI indicating that TFs and genes need to be expressed in the same context to interact, even if the TF acts as a repressor.

We also tested tissue specific coexpression getting similar results.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction	Materials and Methods	Results	Conclusions	Future perspectives
000	000000	0000		

Future perspectives

The overall performance of the model is encouraging, but still not satisfactory (AUC 0.56).

Some improvements could be made to the model:

- more sophisticated measure of coexpression,
- including composite effects of TFs,
- using additional predictors
 - epigenomic data
- make the model able to identify TF specific activity (repressive or activating)
 - time course expression data

A 日 > A 同 > A 国 > A 国 >

Materials and Methods

Results 0000 Conclusions

Future perspectives

Acknowledgement

I would like to thanks

- Paolo Provero
- Ivan Molineris
- Elena Grassi

(日) (四) (日) (日) (日)

and the Computational Biology Unit at University of Turin, MBC-Molecular Biotechnology Center.

Ugo Ala, Davide Marnetto, Umberto Perron, Elisa Mariella, Simona Baghai, Federica Mantica, Elisa Reale and Stefano Gigliotti.

