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Background

Neurologlgal dlsorde_rs gxhibit a great variety of molecular alterations due to a complex interplay between polygenetic and environmental factors
[1.] . Classical reductionist approaches are focused on a few elements, providing a narrow overview of the etiopathogenic complexity of multifactorial
diseases [2] . On.the other hand, high-throughput technologies such as transcriptomics, proteomics, metabolomics and computational approaches
f'allow thle evaluation of many components of biological systems and their behaviors [2, 3], thus allowing for system-level investigations IOI\I/?olecular
mteractlo.ns are ofFen represented as graphs which are the starting point of many computational approaches aiming to analyze modell Interpret
and predict blolpglcal phenomena [4] . Network analysis of Parkinson's Disease (PD) and Alzheimer's Disease can highlight pro’teins or’ athvr\;a S
common but differentially represented that can be discriminating between the two pathological conditions thus highlight similariFt)ies an{j

differences.
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5) We constructed a Similarity Matrix that was then clustereo[ using — E‘fc\'t
auclidean distance. This clustering step revealed_argas in the Eﬁé ster 8
Similarity Matrix that were statistically evaluated assigning to each - = S 1E
: _ d with respect to the | ———— e
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Figure 2. Similarity Matrix. This matrix
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common terms. Despite this richness of terms, known processes

involved in both pathologies were missing or not significant.
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Figure 1. A) Accur -C 0 similar communitie; between the two pathologies. Our strategy
greater than 0.4 atcy against Rea,Cto.me- Accuracy threshold allowed us to identify some common unknown processes and some
& Captures Reactome's interactions. B) Network known processes such as DNA repair, RNA metabolism and glucose

éxpansion on a starting set of about 400 vertice i -
- . S. The best ch . . . .
was taking only the first neighbors. C) Recall. Average fractior‘:'f}? metabolism which were not detected with simple GO enrichment.

seed proteins captured in both networks at each threshold. D) In particular, we were able to capture the connection between
>Imilarity between networks and random networks. Dashed lines mitochondrial dysfunction and metabolism (glucose and glutamate/

3?5?\, distance from random networks, continuous lines show glutamine).
ance between AD and PD networks. Distance O, identical

networks; distance 1, completely different network
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